名称描述内容
输入关键词搜索海量报告...
​智研瞻产业研究院
交通运输
金融服务
物流运输
食品饮料
能源环保
家电IT
零售快消
矿产冶金
医疗健康
五金仪表
其它
化工新材
机械制造
互联网+
文体产业
服务行业
地产建筑
轻工服装
中国机器学习行业深度调研及投资前景预测报告
❤ 收藏

中国机器学习行业深度调研及投资前景预测报告

【交付方式】即时更新(3个工作日内) Email电子版
【订购电话】13590156548
【报告格式】电子版(PDF)
【QQ 咨询】1977505100

12800.00
¥12800.00
¥6500.00-6800.00
¥6435.00-6732.00
¥6370.00-6664.00
¥6175.00-6460.00
重量:0.000KG
数量:
(库存300)
立即购买
加入购物车
商品描述

【交付方式】即时更新(3个工作日内) Email电子版
【订购电话】13590156548
【报告格式】电子版(PDF)
【QQ 咨询】1977505100


第一章 机器学习相关介绍

1.1 人工智能相关概念

1.1.1 人工智能的定义

1.1.2 人工智能产业链

1.1.3 人工智能基本要素

1.2 机器学习的概念

1.2.1 机器学习的定义

1.2.2 机器学习开发平台

1.2.3 机器学习的原理

1.2.4 机器学习应用范围

1.3 机器学习的分类

1.3.1 按学习模式不同分类

1.3.2 按算法网络深度分类

第二章 人工智能行业发展综合分析

2.1 全球人工智能行业发展综述

2.1.1 人工智能发展历程

2.1.2 人工智能支持政策

2.1.3 人工智能市场规模

2.1.4 人工智能区域分布

2.1.5 人工智能市场结构

2.1.6 人工智能专利数量

2.1.7 人工智能融资规模

2.1.8 人工智能应用状况

2.2 中国人工智能市场运行状况

2.2.1 人工智能发展历程

2.2.2 人工智能产业政策

2.2.3 人工智能市场规模

2.2.4 人工智能软件规模

2.2.5 人工智能企业数量

2.2.6 人工智能发展现状

2.2.7 人工智能从业人员

2.2.8 人工智能融资规模

2.3 人工智能基础层

2.3.1 基础层产业链价值

2.3.2 基础层发展历程

2.3.3 基础层市场规模

2.3.4 基础层发展现状

2.3.5 基础层融资规模

2.3.6 基础层发展问题

2.3.7 基础层发展趋势

2.4 人工智能技术层

2.4.1 技术层发展现状

2.4.2 人工智能技术全景

2.4.3 人工智能技术水平

2.4.4 人工智能技术分布

2.4.5 人工智能技术成熟度

2.4.6 人工智能热点技术

2.4.7 人工智能专利数量

2.4.8 自然语音处理技术

2.4.9 生物特征识别技术

2.4.10 知识图谱技术

2.4.11 计算机视觉技术

2.4.12 语音语义技术

2.4.13 人工智能技术平台

2.4.14 技术层发展问题

2.4.15 技术层发展趋势

2.5 人工智能应用层

2.5.1 应用层发展现状

2.5.2 各应用层成熟度

2.5.3 应用层市场结构

2.5.4 应用层发展问题

2.5.5 应用层发展趋势

2.5.6 人工智能医疗领域应用

2.5.7 人工智能金融领域应用

2.5.8 人工智能智慧城市应用

2.5.9 人工智能教育领域应用

2.5.10 人工智能制造业应用

2.6 部分城市人工智能产业发展状况

2.6.1 上海市

2.6.2 北京市

2.6.3 深圳市

2.6.4 杭州市

2.7 中国人工智能行业发展趋势分析

2.7.1 人工智能总体发展趋势

2.7.2 人工智能宏观趋势研判

2.7.3 人工智能技术发展研判

2.7.4 人工智能应用场景研判

2.7.5 人工智能市场规模预测

第三章 机器学习行业发展综合分析

3.1 全球机器学习行业发展综述

3.1.1 机器学习市场规模分析

3.1.2 机器学习行业发展动力

3.1.3 机器学习市场竞争格局

3.1.4 机器学习发展面临挑战

3.1.5 机器学习企业竞争优势

3.1.6 机器学习市场前景预测

3.2 中国机器行业发展现状分析

3.2.1 机器学习行业发展历程

3.2.2 机器学习行业政策回顾

3.2.3 机器学习市场规模分析

3.2.4 机器学习市场区域分布

3.2.5 机器学习市场竞争格局

3.2.6 机器学习平台市场份额

3.2.7 机器学习行业制约因素

3.3 中国机器学习行业技术发展状况

3.3.1 机器学习技术发展路线

3.3.2 机器学习专利申请数量

3.3.3 机器学习技术发展现状

3.3.4 机器学习技术成熟度

3.3.5 机器学习技术研究进展

3.3.6 机器学习技术研究趋势

第四章 中国机器学习产业链综合分析

4.1 机器学习产业链构成

4.2 机器学习产业链上游分析

4.2.1 人工智能芯片主要类型

4.2.2 人工智能芯片市场规模

4.2.3 人工智能芯片供应商

4.2.4 云计算市场规模分析

4.2.5 云计算平台服务商

4.2.6 云计算代表企业介绍

4.2.7 大数据技术体系图谱

4.2.8 大数据服务商分析

4.2.9 大数据市场规模分析

4.2.10 大数据市场支出规模

4.2.11 大数据行业应用结构

4.2.12 大数据产业人才需求

4.3 机器学习产业链中游分析

4.3.1 机器学习技术服务商

4.3.2 机器学习平台厂商

4.3.3 机器学习开放平台

4.3.4 机器学习开源发展

4.4 机器学习产业链下游概述

4.4.1 机器学习应用服务商

4.4.2 机器学习应用领域概况

4.4.3 基于GPU的机器学习应用

第五章 深度学习行业发展深度分析

5.1 深度学习行业发展综述

5.1.1 深度学习基本概念

5.1.2 深度学习发展历程

5.1.3 深度学习所处阶段

5.1.4 深度学习主要功能

5.1.5 深度学习发展动力

5.1.6 深度学习融合发展

5.2 深度学习市场运行现状分析

5.2.1 深度学习竞争格局

5.2.2 细分市场发展现状

5.2.3 预训练模型现状分析

5.2.4 深度学习融资现状

5.2.5 深度学习应用领域

5.2.6 深度学习发展问题

5.2.7 深度学习发展建议

5.3 深度学习开源框架市场分析

5.3.1 深度学习框架发展历程

5.3.2 深度学习框架主要作用

5.3.3 深度学习框架驱动因素

5.3.4 深度学习框架市场份额

5.3.5 开源框架市场竞争格局

5.3.6 选择开源框架的考量因素

5.4 深度学习行业发展前景及趋势分析

5.4.1 深度学习应用前景

5.4.2 深度学习发展趋势

5.4.3 深度学习技术趋势

5.4.4 模型小型化发展方向

第六章 中国机器学习行业应用领域发展分析

6.1 机器学习算法应用场景分析

6.1.1 分类算法应用场景

6.1.2 回归算法应用场景

6.1.3 聚类算法应用场景

6.1.4 关联规则应用场景

6.2 机器学习在医疗领域中的应用

6.2.1 主要应用场景

6.2.2 医疗影像智能诊断

6.2.3 新药研发

6.2.4 基因测序

6.3 机器学习在金融领域中的应用

6.3.1 主要应用场景

6.3.2 联邦学习

6.3.3 金融科技

6.3.4 智能风控

6.3.5 智慧银行

6.3.6 智慧投顾

6.4 机器学习在农业领域中的应用

6.4.1 应用意义

6.4.2 应用现状

6.4.3 应用问题

6.4.4 应用展望

6.5 机器学习在制造业中的应用

6.5.1 应用优势

6.5.2 智能工厂

6.5.3 智能物流

6.5.4 智能系统

6.5.5 缺陷检测

6.5.6 预测性维护

6.5.7 生成设计

6.5.8 能耗预测

6.5.9 供应链管理

6.6 机器学习在智慧城市中的应用

6.6.1 智能政务

6.6.2 智能基础设施系统

6.6.3 智能交通

6.6.4 自动驾驶

6.6.5 安防行业

6.7 机器学习在教育领域中的应用

6.7.1 智慧校园

6.7.2 智慧课堂

6.7.3 智适应教学

第七章 国内外企业主要机器学习产品及应用分析

7.1 全球主要科技企业机器学习布局

7.2 机器学习在国外企业中的应用

7.2.1 亚马逊机器学习应用

7.2.2 苹果公司机器学习应用

7.2.3 Ayasdi机器学习应用

7.2.4 Digital Reasoning机器学习应用

7.2.5 Facebook机器学习应用

7.2.6 谷歌机器学习应用

7.2.7 IBM Watson机器学习应用

7.2.8 QBurst机器学习应用

7.2.9 高通机器学习应用

7.2.10 Uber机器学习应用

7.3 机器学习在国内企业中的应用

7.3.1 百度机器学习云平台

7.3.2 阿里云机器学习平台

7.3.3 腾讯智能钛机器学习

7.3.4 第四范式AutoML平台

第八章 中国机器学习重点企业经营分析

8.1 商汤科技

8.1.1 企业发展概况

8.1.2 经营效益分析

8.1.3 企业商业模式

8.1.4 机器学习布局

8.1.5 企业融资状况

8.2 第四范式

8.2.1 企业发展概况

8.2.2 机器学习平台

8.2.3 企业融资规模

8.2.4 企业竞争优势

8.2.5 企业研发投入

8.2.6 企业应用场景

8.3 旷视科技

8.3.1 企业发展概况

8.3.2 企业经营效益

8.3.3 企业资产规模

8.3.4 企业业务构成

8.3.5 企业研发投入

8.3.6 机器学习技术

8.4 科大讯飞

8.4.1 企业发展概况

8.4.2 经营效益分析

8.4.3 业务经营分析

8.4.4 财务状况分析

8.4.5 核心竞争力分析

8.4.6 公司发展战略

8.4.7 未来前景展望

8.5 浪潮集团

8.5.1 企业发展概况

8.5.2 经营效益分析

8.5.3 业务经营分析

8.5.4 财务状况分析

8.5.5 核心竞争力分析

8.5.6 公司发展战略

8.5.7 未来前景展望

8.6 百度飞桨

8.6.1 企业发展概况

8.6.2 企业发展历程

8.6.3 平台技术优势

8.6.4 企业核心竞争力

8.6.5 深度学习发展

8.6.6 平台应用场景

8.7 索信达控股

8.7.1 企业发展概况

8.7.2 机器学习应用

8.7.3 2020年企业经营状况

8.7.4 2021年企业经营状况

8.7.5 2022年企业经营状况

8.8 其他企业

8.8.1 九章云极

8.8.2 阿里云

8.8.3 华为云

8.8.4 京东云

8.8.5 腾讯云

8.8.6 百分点

8.8.7 天云数据

第九章 中国机器学习行业投资分析及前景预测

9.1 中国机器学习行业投资分析

9.1.1 机器学习投资状况分析

9.1.2 机器学习进入壁垒分析

9.2 中国机器学习行业发展前景分析

9.2.1 机器学习市场发展前景

9.2.2 机器学习行业发展方向

9.2.3 机器学习市场空间预测

9.3 机器学习技术发展趋势分析

9.3.1 发展胶囊网络技术

9.3.2 发展生成对抗网络

9.3.3 发展深度强化学习

9.3.4 可解释性机器学习

9.4 中国机器学习行业预测分析

9.4.1 中国机器学习行业影响因素分析

9.4.2 中国机器学习市场规模预测


智研瞻产业研究院部分客户
下载订购协议


报告研究方法

报告主要采用的分析方法和模型包括但不限于:
- 波特五力模型分析法
- SWOT分析法
- PEST分析法
- 图表分析法
- 比较与归纳分析法
- 定量分析法
- 预测分析法
- 风险分析法
……
报告运用和涉及的行业研究理论包括但不限于:
- 产业链理论
- 生命周期理论
- 产业布局理论
- 进入壁垒理论
- 产业风险理论
- 投资价值理论
……
数据来源
报告统计数据主要来自智研瞻产业研究院、国家统计局、地方统计局、海关总署、行业协会、工信部数据等有关部门和第三方数据库;
部分数据来自业内企业、专家、资深从业人员交流访谈;
消费者偏好数据来自问卷调查统计与抽样统计;
公开信息资料来自有相关部门网站、期刊文献网站、科研院所与高校文献;

其他数据来源包括但不限于:联合国相关统计网站、海外国家统计局与相关部门网站、其他国内外同业机构公开发布资料、国外统计机构与民间组织等等。


报告研究基于研究团队收集到的大量一手和二手信息,研究过程综合考虑行业各种影响因素,包括市场环境、产业政策、历史数据、行业现状、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等。


通过对特定行业长期跟踪监测,分析行业供给端、需求端、经营特性、盈利能力、产业链和商业模式等方面的内容,整合行业、市场、企业、渠道、用户等多层面数据和信息资源,为客户提供深度的行业市场研究报告,全面客观的剖析当前行业发展的总体市场容量、竞争格局、细分数据、进出口及市场需求特征等,并根据各行业的发展轨迹及实践经验,对行业未来的发展趋势做出客观预测。


智研瞻产业研究院建立了严格的数据清洗、加工和分析的内控体系,分析师采集信息后,需严格按照公司评估方法论和信息规范的要求,并结合自身专业经验,对所获取的信息进行整理、筛选,最终通过综合统计、分析测算得相关产业研究成果。